714 research outputs found

    Why dried blood spots are an ideal tool for CYP1A2 phenotyping

    Get PDF
    Background and Objective: Dried blood spot (DBS) sampling has gained wide interest in bioanalysis during the last decade and has already been successfully applied in pharmacokinetic and phenotyping studies. However, all of the available phenotyping studies used small datasets and did not include a systematic evaluation of DBS-specific parameters. The latter is important since several of these factors still challenge the breakthrough of DBS in routine practice. In this study, caffeine and paraxanthine are determined in capillary DBS, venous DBS, whole blood and plasma for cytochrome P450 (CYP) 1A2 phenotyping. The aim of this study was to explore the usefulness of DBS as a tool for CYP1A2 phenotyping. Methods: A CYP1A2 phenotyping study was conducted in 73 healthy volunteers who received a 150 mg oral dose of caffeine. Six hours post-administration, caffeine and paraxanthine concentrations and paraxanthine:caffeine molar concentration ratios, i.e., the actual CYP1A2 phenotyping indices, were determined in capillary DBS (obtained by non-volumetric application, direct from the fingertip), venous DBS, whole blood, and plasma. Furthermore, the impact of DBS-specific parameters, including hematocrit, volume spotted, and punch location, was evaluated. Results: Concentrations of caffeine and paraxanthine in capillary DBS were, respectively, on average 12.7 and 13.8 % lower than those in venous DBS and 31.5 and 33.1 % lower than those in plasma. While these differences were statistically significant (p = 0.053). This ratio also alleviated the impact of hematocrit and volume spotted. Conclusions: Using the largest DBS-based phenotyping study to date, we have demonstrated that CYP1A2 phenotyping in capillary DBS is a valid and convenient alternative for the classical plasma-based approach. Additionally, we have provided an objective basis as to why DBS are an ideal tool for CYP1A2 phenotyping

    Meister der GebetbĂĽcher um 1500

    Get PDF

    A Small, Additonal, Added–on Life Speaking. Remarks on the Vitalism in Giorgio Agamben's Critical Theory

    Get PDF
    Agamben’s thought gives us an interesting set of tools and references to critically analyse the logic of sovereignty haunting even the best intentions of Western biopolitics. As an alternative to the inherently disastrous logic of inclusive exclusion, he puts forward a strong vitalist, ontological way of thinking. This paper is an enquiry into whether that alternative is really valid. As far as his publications allow (since the “pars construens” of his Homo Sacer project is still to be published), the answer to this question must be negative. A careful reading of the passages on language in both Homo Sacer I and III (Remnants of Auschwitz), is illuminating in this regard. This is because the passages on language in which Agamben develops his alternative logic (for instance, the ones on bearing witness) do not overcome the logic of sovereignty denounced in the usual – representationalist – way of thinking the biopolitical. Those passages give no adequate answer to the representationalist way of treating the same problems, saying that the logic of sovereignty – of inclusive exclusion – is  the logic we have to deal with even to find solutions for the disaster that logic has provoked and is still able to provoke

    Meister Karls V

    Get PDF

    Meister des älteren Gebetbuches Maximilians I

    Get PDF

    A caffeinated blend of alternative sampling strategies : from CYP1A2 phenotyping to issues in microsampling

    Get PDF

    Dried blood spots in toxicology : from the cradle to the grave?

    Get PDF
    About a century after its first described application by Ivar Bang, the potential of sampling via dried blood spots (DBS) as an alternative for classical venous blood sampling is increasingly recognized. Perhaps best known is the use of DBS in newborn screening programs, ignited by the hallmark paper by Guthrie and Susi half a century ago. However, it is only recently that both academia and industry have recognized the many advantages that DBS sampling may offer for bioanalytical purposes, as reflected by the strong increase in published reports during the last few years. Currently, major DBS applications include newborn screening for metabolic disorders, epidemiological surveys (e. g. HIV monitoring), therapeutic drug monitoring (TDM), as well as toxicology. In this review, we provide a comprehensive overview of the distinct subdisciplines of toxicology for which DBS sampling has been applied. DBS sampling for toxicological evaluation has been performed from birth until autopsy, aiming at the assessment of therapeutic drugs, drugs of abuse, environmental contaminants, toxins, as well as (trace) elements, with applications situated in fields as toxicokinetics, epidemiology and environmental and forensic toxicology. We discuss the strengths and limitations of DBS in the different subdisciplines and provide future prospects for the use of this promising sampling technique in toxicology

    Potassium-based algorithm allows correction for the hematocrit bias in quantitative analysis of caffeine and its major metabolite in dried blood spots

    Get PDF
    Although dried blood spot (DBS) sampling is increasingly receiving interest as a potential alternative to traditional blood sampling, the impact of hematocrit (Hct) on DBS results is limiting its final breakthrough in routine bioanalysis. To predict the Hct of a given DBS, potassium (K+) proved to be a reliable marker. The aim of this study was to evaluate whether application of an algorithm, based upon predicted Hct or K+ concentrations as such, allowed correction for the Hct bias. Using validated LC-MS/MS methods, caffeine, chosen as a model compound, was determined in whole blood and corresponding DBS samples with a broad Hct range (0.18-0.47). A reference subset (n = 50) was used to generate an algorithm based on K+ concentrations in DBS. Application of the developed algorithm on an independent test set (n = 50) alleviated the assay bias, especially at lower Hct values. Before correction, differences between DBS and whole blood concentrations ranged from -29.1 to 21.1 %. The mean difference, as obtained by Bland-Altman comparison, was -6.6 % (95 % confidence interval (CI), -9.7 to -3.4 %). After application of the algorithm, differences between corrected and whole blood concentrations lay between -19.9 and 13.9 % with a mean difference of -2.1 % (95 % CI, -4.5 to 0.3 %). The same algorithm was applied to a separate compound, paraxanthine, which was determined in 103 samples (Hct range, 0.17-0.47), yielding similar results. In conclusion, a K+-based algorithm allows correction for the Hct bias in the quantitative analysis of caffeine and its metabolite paraxanthine

    A new species of Cantharomyces (Laboulbeniales, Ascomycota) from the Netherlands

    Get PDF
    This paper describes and illustrates Cantharomyces elongatus sp. nov., a parasitic fungus from Syntomium aeneum (Staphylinidae, Oxytelinae, Euphaniini). Syntomium is a new host genus for Cantharomyces. Comments on its position among related taxa are given
    • …
    corecore